Intergenomic Comparisons Highlight Modularity of the Denitrification Pathway and Underpin the Importance of Community Structure for N2O Emissions

نویسندگان

  • Daniel R. H. Graf
  • Christopher M. Jones
  • Sara Hallin
چکیده

Nitrous oxide (N2O) is a potent greenhouse gas and the predominant ozone depleting substance. The only enzyme known to reduce N2O is the nitrous oxide reductase, encoded by the nosZ gene, which is present among bacteria and archaea capable of either complete denitrification or only N2O reduction to di-nitrogen gas. To determine whether the occurrence of nosZ, being a proxy for the trait N2O reduction, differed among taxonomic groups, preferred habitats or organisms having either NirK or NirS nitrite reductases encoded by the nirK and nirS genes, respectively, 652 microbial genomes across 18 phyla were compared. Furthermore, the association of different co-occurrence patterns with enzymes reducing nitric oxide to N2O encoded by nor genes was examined. We observed that co-occurrence patterns of denitrification genes were not randomly distributed across taxa, as specific patterns were found to be more dominant or absent than expected within different taxonomic groups. The nosZ gene had a significantly higher frequency of co-occurrence with nirS than with nirK and the presence or absence of a nor gene largely explained this pattern, as nirS almost always co-occurred with nor. This suggests that nirS type denitrifiers are more likely to be capable of complete denitrification and thus contribute less to N2O emissions than nirK type denitrifiers under favorable environmental conditions. Comparative phylogenetic analysis indicated a greater degree of shared evolutionary history between nosZ and nirS. However 30% of the organisms with nosZ did not possess either nir gene, with several of these also lacking nor, suggesting a potentially important role in N2O reduction. Co-occurrence patterns were also non-randomly distributed amongst preferred habitat categories, with several habitats showing significant differences in the frequencies of nirS and nirK type denitrifiers. These results demonstrate that the denitrification pathway is highly modular, thus underpinning the importance of community structure for N2O emissions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The diversity of the N2O reducers matters for the N2O:N2 denitrification end-product ratio across an annual and a perennial cropping system

Agriculture is the main source of terrestrial emissions of N2O, a potent greenhouse gas and the main cause of ozone layer depletion. The reduction of N2O into N2 by microorganisms carrying the nitrous oxide reductase gene (nosZ) is the only biological process known to eliminate this greenhouse gas. Recent studies showed that a previously unknown clade of N2O-reducers was related to the capacity...

متن کامل

Structure and Activity of Denitrifier Communi- ties in Biochar-Amended Soil and Their Impact on N2O Emissions

Nitrous oxide is a greenhouse gas with a global warming potential about 300 times higher than CO2. The main sources of N2O are microbial-mediated nitrogen transformation reactions in soils. Denitrification represents one of the major N2Oproducing pathways in oxygen-limited zones. Soil biochar amendment has been demonstrated to reduce N2O emissions in microcosms and in the field. Although N2O em...

متن کامل

Changes in Denitrification Rate, Bacterial Denitrifier Community Structure and Abundance in Dairy-grazed Pasture Soils Treated with Cattle Urine and Dcd

Urine excreted by cattle can produce very high concentrations of available N in relatively small volumes of soil and lead to high nitrous oxide (N2O) emissions. Application of the nitrification inhibitor dicyandiamide (DCD) can inhibit nitrification. DCD application results in lower nitrate (NO3 ) concentrations and N2O emissions from denitrification in urine affected soils. However, the effect...

متن کامل

Modelling of nitrous oxide emissions from an A2/O process treating municipal wastewater

Nitrous oxide (N2O) is a greenhouse gas significantly contributing to the greenhouse effect and potentially generated during the biological nutrient removal in wastewater treatment plants (WWTPs). The 3 possible microbial pathways for the N2O production are the incomplete hydroxylamine oxidation, the nitrifier denitrification and the heterotrophic denitrification. The first two, both followed b...

متن کامل

Biochar increases soil N2O emissions produced by nitrification-mediated pathways

*Correspondence: María L. Cayuela, CEBAS-CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain e-mail: [email protected] In spite of the numerous studies reporting a decrease in soil nitrous oxide (N2O) emissions after biochar amendment, there is still a lack of understanding of the processes involved. Hence the subject remains controversial, with a number of studies showing no cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014